

KTH Computer Science

and Communication

Gesture in Interaction: Expressive Control Strategies (Part II)

Roberto Bresin

KTH Computer Science and Communication Department of Speech Music and Hearing

Copyright (c) 2005 Roberto Bresin

This work is licenced under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Outlook 1/2

Chapter 7: Control of music performance

- A fuzzy analyzer of emotional expression in music and gestures
- Application:
 - Visualization of music performance

In the afternoon session:

- The KTH rule system for music performance
 - pDM Real time control of the KTH rule system

Outlook 2/2

Chapter 8: Controlling Sound Production

- Sound and motion
- Sound and interaction
- Examples:
 - Control of musical instruments
 - DJ scratching (KTH)
 - Virtual Air Guitar (TKK)
 - Control of sounding objects
 - reacTable* (UPF)
 - The Interactive Book (VIPS)

Recognition of Emotion

▶ Fuzzy analyzer of emotional expression

Real-time Visualization of Musical Expression

Controlling Sound Production

Book

DJ scratching Virtual Air Guitar reacTable* The Interactive Tempo
Sound level
Articulation..

Audio → Cue
analysis Expression
mapper

Emotion

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching Virtual Air Guitar reacTable* The Interactive Book

CUEX- Extraction of Tone Parameters

A Friberg, E Schoonderwaldt, P N Juslin

Method

Find tone boundaries

Tone start/tone end

Calculate cues

- Tempo (tones/second)
- Sound Level
- Articulation (staccato/legato)
- Attack Velocity
- Spectrum
- Vibrato rate
- Vibrato extent
- Pitch

Positive Valence

From Juslin (2001)

TENDERNESS

slow mean tempo (Ga96)
slow tone attacks (Ga96)
low sound level (Ga96)
small sound level variability (Ga96)
legato articulation (Ga96)
soft timbre (Ga96)
large timing variations (Ga96)
accents on stable notes (Li99)
soft duration contrasts (Ga96)
final ritardando (Ga96)

HAPPINESS

fast mean tempo (Ga95) small tempo variability (Ju99) staccato articulation (Ju99) large articulation variability (Ju99) high sound level (Ju00) little sound level variability (Ju99) bright timbre (Ga96) fast tone attacks (Ko76) small timing variations (Ju/La00) sharp duration contrasts (Ga96) rising micro-intonation (Ra96)

Low Activity ←

ightarrow High Activity

SADNESS

slow mean tempo (Ga95) legato articulation (Ju97a) small articulation variability (Ju99) low sound level (Ju00) dull timbre (Ju00) large timing variations (Ga96) soft duration contrasts (Ga96) slow tone attacks (Ko76) flat micro-intonation (Ba97) slow vibrato (Ko00) final ritardando (Ga96)

• FEAR

staccato articulation (Ju97a)
very low sound level (Ju00)
large sound level variability (Ju99)
fast mean tempo (Ju99)
large tempo variability (Ju99)
large timing variations (Ga96)
soft spectrum (Ju00)
sharp micro-intonation (Oh96b)
fast, shallow, irregular vibrato (Ko00)

ANGER

high sound level (Ju00) sharp timbre (Ju00) spectral noise (Ga96) fast mean tempo (Ju97a) small tempo variability (Ju99) staccato articulation (Ju99) abrupt tone attacks (Ko76) sharp duration contrasts (Ga96) accents on unstable notes (Li99) large vibrato extent (Oh96b) no ritardando (Ga96)

Negative Valence

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

FUZZY MAPPING from acoustic cues to emotion recognition

Section 7.0.8.1: A fuzzy analyzer of emotional expression in music and gestures

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching Virtual Air Guitar reacTable* The Interactive Book

From audio to emotion recognition

▶ Real-timeVisualization ofMusicalExpression

Controlling Sound Production

DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

Application: visual feedback

Design a tool for real-time visual feedback to expressive performance

- → Mapping of acoustic cues:
 - Non-verbal
 - Intuitive
 - Informative (including emotional expression)

Previous studies: cross-modality speeds stimuli discrimination

The ExpressiBall

Expressive performance space as a mapping of acoustical cues and emotions

X → Tempo

Y → Sound level

Z → Attack velocity & Spectrum energy

Color → Emotion
Shape → Articulation

Staccato
Angry
Fast attack
High energy

Legato
Sad
Slow attack
Low energy

▶ Real-timeVisualization ofMusical Expression

Controlling Sound Production

DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

From music expression to facial expression

M Mancini¹, R Bresin², C Pelachaud¹ (¹LINC-LIA, ²KTH)
HUMAINE NoE http://emotion-research.net

Parameters are received by the ECA Greta via TCP/IP:

music emotion → facial expression

sound level →

spatial and power

music tempo → temporal and overall activation

music articulation → fluidity

Real-time Visualization of Musical Expression

→ ControllingSoundProduction

DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

Sound and motion

Section 8.0.11.1: Sounds are related to motion, as they are usually the result of actions:

- body gestures (e.g. the singing voice)
- mechanical movements (e.g. the sound of train wheels on rails)
- ...

Example: the sound of a step in isolation is difficult to identify, while it gives the idea of walking if repeated a number of times. If the time sequence is organized according to equations resembling biological motion, then walking sounds can be perceived as more natural (Bresin and Dahl 2003). In addition, if sound level and timing are varied, it is possible to communicate different emotional intentions with walking sounds.

Real-time Visualization of Musical Expression

→ ControllingSoundProduction

DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

Sound and interaction

Section 8.0.11.2: Feedback plays an important role in any controlling action:

- sound resulting from the user's gestures on an object or a musical instrument
- sound carries information about the user's actions
- sound is a multidimensional information carrier

Example: Temporal control of sound events helps in communicating the nature of the sound source (e.g. a <u>footstep</u>), the action that is being performed (<u>walking/running</u>), and the intention (e.g. <u>anger</u>, <u>happiness</u>).

Real-time Visualization of Musical Expression

Controlling Sound Production

► DJ scratching
Virtual Air Guitar
reacTable*
The Interactive
Book

DJ scratching with Skipproof

K F Hansen, R Bresin (KTH)

Section 8.0.12: a program for the simulation of typical DJ scratching gestures:

- This interface allows the novice musician to emulate DJs' techniques
- Use of gesture controllers instead of the traditional turntable, mixer and vinyl record set-up

DJ A-trak

Right hand controls the crossfader on the sound mixer. In the run of 1 mm, the fader goes from silent to full volume.

Real-time Visualization of Musical Expression

Controlling Sound **Production**

DJ scratching Virtual Air Guitar reacTable* The Interactive Book

Musical phrase: (one bar)

Single

(twiddle scratch)

DJ gestures (1/2)

Record movement (deg)

Waveform from mixer

Crossfader movement (mm)

Spectrogram

Crossfader movement

Waveform

Record movement (bolder line: sound muted by crossfader)

Musical notation (durations)

Real-time Visualization of Musical Expression

Controlling Sound Production

▶ DJ scratching

Virtual Air Guitar reacTable*
The Interactive Book

DJ gestures (2/2)

Overview of synthesized scratching techniques

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching

Virtual Air Guitar reacTable*
The Interactive Book

DJ in concert with the *thimble controller* and a conventional crossfader.

Controllers for Skipproof

Mouse controller for record movement and light switch for crossfader movement.

Thimble controller is a 3D

sensor for the *Radio Baton*. Can be mapped to both record and crossfader movement.

Audience playing with the *thimble* controller and a *light* switch crossfader.

Various mappings to record and crossfader with Toaster's numerous sensors. Here *pressure*,

accelerometer and bending sensors.

The *twiddle scratch* as recorded by the DJ (left column) and reproduced with the above gesture controllers (right column).

Record movement

Crossfader movement

original

reproduced

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching

Virtual Air

Guitar

reacTable*
The Interactive
Book

Virtual Air Guitar (TKK)

M Karjalainen, T Mäki-Patola, A Kanerva, A Huovilainen http://airguitar.tml.hut.fi/

Section 8.0.13: a model for the control of guitar playing without a guitar.

A physics-based sound model (virtual stratocaster) is controlled with the player's hands using web camera or gesture sensors.

Ultrasonic sensors monitor the position of the hands

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching Virtual Air Guitar

▶ reacTable*

The Interactive Book

reacTable* (UPF)

S Jordà, M Kaltenbrunner, G Geiger, R Bencina http://www.iua.upf.es/mtg/reacTable/

Section 8.0.14: reacTable* is a musical instrument based on a tabletop tangible user interface:

- It allows cooperative and distributed multi-user music performance and composition
- Can be played by manipulating a set of objects distributed on top of a table surface

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching Virtual Air Guitar reacTable*

► The Interactive Book

The Interactive Book

A de Götzen, D Rocchesso (VIPS)

Section 8.0.15: Overview of book interfaces focusing on future developments of <u>children books</u>. This class of books is ideal for the design of innovative applications associating sounds to interaction and therefore enhancing both narrative of the story and immersion of the reader.

Legato and Staccato Allude to Walking and Running?

Step and key overlap time

Step and key detached time

Legato and walking

Footsteps

Walking 🥠

Running 4

Real-time Visualization of Musical Expression

Controlling Sound Production

DJ scratching Virtual Air Guitar reacTable*

► The Interactive Book

Controlling Footsteps

Pd model for crumpling sounds controlled with performance rules

The End

